NanoBanana侧面黑白鲨守-modified.png

🛬 Attending

🇰🇷ICML2026, Seoul, KR


My research is supported by:

Coefficient Giving

Thinking Machines Lab

Zulip for Open-Source Project


<aside> <img src="notion://custom_emoji/0d39d0ab-438c-4f29-be70-03aa9d912057/2c928fcd-40c2-806f-bf66-007a2758f01d" alt="notion://custom_emoji/0d39d0ab-438c-4f29-be70-03aa9d912057/2c928fcd-40c2-806f-bf66-007a2758f01d" width="40px" /> Google Scholar

</aside>

<aside> <img src="notion://custom_emoji/0d39d0ab-438c-4f29-be70-03aa9d912057/2c928fcd-40c2-8076-afbe-007af223fbba" alt="notion://custom_emoji/0d39d0ab-438c-4f29-be70-03aa9d912057/2c928fcd-40c2-8076-afbe-007af223fbba" width="40px" /> Research Gate

</aside>

<aside> <img src="attachment:5a1e77b6-a69a-4a9c-8282-b0e70b4de887:Less_Wrong_LOGO.png" alt="attachment:5a1e77b6-a69a-4a9c-8282-b0e70b4de887:Less_Wrong_LOGO.png" width="40px" /> LessWrong

</aside>

Socials


<aside> <img src="notion://custom_emoji/0d39d0ab-438c-4f29-be70-03aa9d912057/2c928fcd-40c2-8012-8d55-007a1a6ff476" alt="notion://custom_emoji/0d39d0ab-438c-4f29-be70-03aa9d912057/2c928fcd-40c2-8012-8d55-007a1a6ff476" width="40px" />

Linkedin

</aside>

<aside> <img src="notion://custom_emoji/0d39d0ab-438c-4f29-be70-03aa9d912057/2c928fcd-40c2-8059-bfa4-007a8ad3da3f" alt="notion://custom_emoji/0d39d0ab-438c-4f29-be70-03aa9d912057/2c928fcd-40c2-8059-bfa4-007a8ad3da3f" width="40px" /> BlueSky

</aside>

<aside> <img src="notion://custom_emoji/0d39d0ab-438c-4f29-be70-03aa9d912057/2c928fcd-40c2-8059-811e-007a23ecdf0a" alt="notion://custom_emoji/0d39d0ab-438c-4f29-be70-03aa9d912057/2c928fcd-40c2-8059-811e-007a23ecdf0a" width="40px" /> X/Twitter

</aside>


Meeting w/ me

Please first Email me before you schedule any meetings here, I only take calls after explicit invitation and with people that I know.

The rise of reasoning and agentic AI is a double-edged sword, which motivates me to study what could go wrong with reasoning agents (esp. in multi-agent scenarios) to not only make AI smarter, but also make smarter AI safer:

  1. Reasoning Done Right (Make AI Smarter): How can we make agents smarter? My vertical focus on improving capability evaluation to better inform post-training (reasoning-driven RL) leveraging horizontal from actionable, often black-box interpretability method and robustness probes. Ultimately, this line of work contributes to AI4Science that enable frontier AI to better accelerate scientific discovery, where I’m particularly intrigued by AI application in exoplanetary astrophysics, phenomenology of high-energy particle physics and organic synthetic chemistry.
  2. Reasoning For Good (Make Smarter AI Safer): How can we make smarter agents safer? Reasoning has also enabled novel threat model such as deception, scheming and collusion. My vertical focus on identifying key triggers that suppress/encourage such agentic misaligned behavior and probing how models react differently in realistic (quasi-deployment) vs. fictional (quasi-evaluation) scenarios. Eventually, I believe models need to learn safety constraints via consequence-aware reasoning (CoI, Chain-of-Implication) similar to how legal deterrence work on humans.

Selected Work (Full List: GScholar)

Slide: What could go wrong with Reasoning Machines?

Useful:

The following represents only my personal opinions:

Science of Evaluation

Science of Post-Training

Education


<aside> 🐔 PhD

Advisor:

</aside>

<aside> 🐥 MSc. Interdisciplinary Science ETH (CS and Physics) ETH Zurich, Switzerland (2024-2025)

Thesis Advisor: Prof. Zhijing Jin, Prof. Bernhard Schölkopf

</aside>

<aside> 🐣 BSc. Interdisciplinary Science ETH (CS, Physics and Chemistry) ETH Zurich, Switzerland (2023-2025)

Thesis Advisor: Prof. Mrinmaya Sachan

</aside>